Assessment of Fracture Integrity for Trawl Impact of the Ormen Lange SFD Pipelines

Author:

Olso̸ Erlend1,Nyhus Ba˚rd1,O̸stby Erling1,Hval Morten2,Knagenhjelm Hans Olav3

Affiliation:

1. SINTEF Materials and Chemistry, Trondheim, Norway

2. Reinertsen AS, Trondheim, Norway

3. StatoilHydro, Oslo, Norway

Abstract

Ormen Lange Southern Field Development (SFD) is part of the phase 2 development of the Ormen Lange gas field located about 120 km offshore the coast of Norway. The SFD includes an 8 slot template, two 16 inch infield flowlines, one 6 5/8 inch MEG line and one umbilical located at about 850 m water depth. Although there are presently no fishing activities at the development area, the pipeline design has included a design case with evaluation of the structural integrity and potential for failure caused by future interaction with fishing gear such as trawl impact/pull-over and hooking. In contrast to the MEG line and the umbilical, which will be trenched and buried along the whole pipeline route, the 16 inch production flowlines will be left exposed on the seabed and may therefore be subjected to interference with trawl equipment in the future. It was therefore decided that pipeline engineering shall document that impact from trawl equipment during operation will not cause detrimental damage to the exposed flowlines, resulting in leakage of hydrocarbons to the environment and/or high cost of repair. In the event of impact from trawl equipment, it is likely that the pipe will be operating and thus be in a state of internal overpressure. Recent research has shown that the effect of internal pressure can be detrimental to the fracture response of pipelines with circumferential flaws subjected to bending or tensile loading. Today’s analytical equations that are the basis for most engineering critical assessments (ECA) are not capable of accounting for the effect of internal pressure when elastic-plastic fracture mechanics is considered. LINKpipe, which is a special purpose finite element program for assessing the fracture integrity of pipelines, is capable of accounting for the effect of internal pressure and was therefore chosen for the fracture integrity assessment. The flowline was analyzed for a range of defect sizes and material stress-strain behaviors. The finite element model was subjected to bending while under internal pressure, and both surface breaking defects and embedded defects have been assessed to ensure that the Ormen Lange SFD flowlines are capable of withstanding impact from trawl equipment during operation. The analyses were used to determine safe operational windows regarding acceptable defect sizes for both surface breaking and embedded defects for the parameters analyzed.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3