Hierarchical Modeling of Pipeline Defect Growth Subject to ILI Uncertainty

Author:

Maes Marc A.1,Faber Michael H.2,Dann Markus R.1

Affiliation:

1. University of Calgary, Calgary, AB, Canada

2. Swiss Federal Institute of Technology, Zu¨rich, Switzerland

Abstract

Pipeline deterioration arises chiefly as the result of various types of internal and external corrosion processes, which are typically subject to several uncertainties. They include material uncertainties, uncertainties in external influences such as loading and environmental variations, uncertainties in operating conditions, various spatial and temporal uncertainties, inspection uncertainties, and modeling uncertainties. Typically, the metal loss time-path at one defect feature may be quite different from the metal loss time-path in a neighboring location even when subject to supposedly similar loading, material and environmental circumstances. On top of that, in-line inspections (ILI) of pipeline systems affected by deterioration are performed infrequently and suffer from considerable uncertainty due to sizing errors and detectability. The present paper provides a Hierarchical Bayes framework for corrosion defect growth. While a full Hierarchical Bayes analysis is practical only for selected critical defect features, we also develop a simplified method based on multi-level generalized least squares. The latter method is useful for scanning large defect inspection data sets. Two detailed examples of the approach are presented.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3