Phase Change of Carbon Atoms in Surface Layer Under Nanocutting During Diamond Lapping Process

Author:

Yang Ning1,Xia Zhihui1,Wang Xingjun1

Affiliation:

1. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Chengdu 610299, Sichuan, China e-mail:

Abstract

Lapping is still an efficient and economical way in diamond shaping process, which is important in both industrial and scientific applications. It has been known that the material removal originates from the phase change or amorphization of diamond crystal carbon atoms that are chemically activated by stress, forming a top layer of amorphous carbon atoms. In this paper, the phase change of amorphous carbon atoms undergoing the nanocutting of amorphous layer during diamond lapping process is studied by molecular dynamics (MD) simulation. Two regions, the debris layer and cutting surface underneath, are studied. In the debris layer, the change of sp2 carbon atoms is directly affected by impact, while underneath the cutting surface the changes of carbon atoms are almost not affected; the change speed of amorphous carbon atoms is higher than that of pristine crystal ones; the main phase change is transformation of sp3 into sp2; cutting depth to different extent affects the phase changes of sp3 and sp2 carbon atoms. Our study expands the understanding of diamond lapping process.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Diamond Polishing;Diamond Relat. Mater.,2013

2. Tolkowsky, M., 1920, “Research on the Abrading, Grinding or Polishing of Diamond,” Ph.D. thesis, University of London, London.

3. Triboattraction: Friction Under Negative Load;Langmuir,1990

4. Scanning Tunneling Microscopy of Polished Diamond Surfaces;Appl. Surf. Sci.,1992

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3