On the Impact Intensity of Vibrating Axially Moving Roller Chains

Author:

Wang K. W.1,Liu S. P.1,Hayek S. I.1,Chen F. H. K.2

Affiliation:

1. The Pennsylvania State University, University Park, PA 16802

2. General Motors Research Labs., Warren, MI

Abstract

Experimental observation has shown that the most significant noise source in roller chain drives is from the impacts between the chain and the sprocket during their meshing process. Despite its importance, studies have not been made to thoroughly analyze the chain/sprocket impact dynamics and their interaction with the vibrating, axially moving chain structure. This paper presents a novel analysis which integrates the local meshing phenomena with the global system. An axially moving chain interacting with local impacts has been modelled and the momentum balance method is employed to derive the impulse function. A study is carried out to quantify the intensity of subsequent impacts. It is found that the impact intensity is significantly affected by the vibration characteristics and response of the moving chain, and vice versa. The classical quasi-static approach will create errors in predicting the impulse magnitude and system response. Meshing frequencies that will cause maximum and minimum impulses are analytically predicted. This fundamental investigation provides new insight into roller chain dynamics, which is an essential step toward the design of quiet chain drives.

Publisher

ASME International

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic and dynamic modeling and approximate analysis of a roller chain drive;Journal of Sound and Vibration;2016-03

2. A Refined Numerical Simulation on Dynamic Behavior of Roller Chain Drives;Shock and Vibration;2004

3. Treatment of Constraints in Complex Multibody Systems. Part I: Methods of Constrained Dynamics;International Journal for Multiscale Computational Engineering;2003

4. An innovative integrated approach to testing motorcycle drive chain lubricants;Tribology Series;2003

5. A method of measuring the dynamic loads in high-speed timing chains;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2000-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3