Toward the Design of a Decoupled, Two-Dimensional, Vision-Based μN Force Sensor

Author:

Cappelleri David J.1,Krishnan Girish2,Kim Charles3,Kumar Vijay4,Kota Sridhar2

Affiliation:

1. Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030

2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

3. Department of Mechanical Engineering, Bucknell University, Lewisburg, PA 17837

4. Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104

Abstract

In this paper, we present three designs for a decoupled, two-dimensional, vision-based micro-Newton (μN) force sensor for microrobotic applications. There are currently no reliable, multi-axis, commercially-available force sensors to measure forces at this scale that can be easily integrated into standard microrobotic test-beds. In our previous work, we presented a design consisting of a planar, elastic mechanism with known force-deflection characteristics. It was inspired by the designs of pre-existing micro electromechanical system suspension mechanisms. A charge-coupled device camera was used to track the deformation of the mechanism as it was used to manipulate objects in a microscale/mesoscale robotic manipulation test-bed. By observing the displacements of select points on the mechanism, the manipulation forces were estimated. In this work, we have designed a compliant mechanism with decoupled stiffness using the building block approach. By designing mechanisms with circular compliance and stiffness ellipses along with zero magnitude compliance and stiffness vectors, we are able to achieve our design requirements. Validation of this approach through the testing of macroscale prototypes and a scaled design for microrobotic applications are offered, along with a sensitivity analysis, yielding insights for microfabricating such designs.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3