The Differential-Discrete-Ordinate Method for Solutions of the Equation of Radiative Transfer

Author:

Kumar S.1,Majumdar A.1,Tien C. L.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

This paper introduces a powerful but simple methodology for solving the general equation of radiative transfer for scattering and/or absorbing one-dimensional systems. Existing methods, usually designed to handle specific boundary and energy equilibrium conditions, either provide crude estimates or involve intricate mathematical analysis coupled with numerical techniques. In contrast, the present scheme, which uses a discrete-ordinate technique to reduce the integro-differential equation to a system of ordinary differential equations, utilizes readily available software routines to solve the resulting set of coupled first-order ordinary differential equations as a two-point boundary value problem. The advantage of this approach is that the user is freed from having to understand complicated mathematical analysis and perform extensive computer programming. Additionally, the software used is state of the art, which is less prone to numerical instabilities and inaccuracies. Any degree of scattering anisotropy and albedo can be incorporated along with different conditions of energy equilibrium or specified temperature distributions and boundary conditions. Examples are presented where the radiative transfer is computed by using different quadratures such as Gaussian, Lobatto, Fiveland, Chebyshev, and Newton-Cotes. Comparison with benchmark cases shows that in a highly forward scattering medium Gaussian quadrature provides the most accurate and stable solutions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3