A Second Look at the Higher-Order Theory for Periodic Multiphase Materials

Author:

Bansal Yogesh1,Pindera Marek-Jerzy1

Affiliation:

1. Civil Engineering Department, University of Virginia, Charlottesville, VA 22904-4742

Abstract

In this communication, we present a reformulation, based on the local/global stiffness matrix approach, of the recently developed higher-order theory for periodic multiphase materials, Aboudi et al. [“Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials,” J. Appl. Mech., 68(5), pp. 697–707]. This reformulation reveals that the higher-order theory employs an approximate, and standard, elasticity approach to the solution of the unit cell problem of periodic multiphase materials based on direct volume-averaging of the local field equations and satisfaction of the local continuity conditions in a surface-averge sense. This contrasts with the original formulation in which different moments of the local equilibrium equations were employed, suggesting that the theory is a variant of a micropolar, continuum-based model. The reformulation simplifies the derivation of the global system of equations governing the unit cell response, whose size is substantially reduced through elimination of redundant continuity equations employed in the original formulation, allowing one to test the theory’s predictive capability in most demanding situations. Herein, we do so by estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such unit cells possess no planes of material symmetry in the rotated coordinate system, and may contain a few or many fibers, depending on the rotation angle, which the reformulated theory can easily accommodate. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model’s previously untested predictive capability for a class of periodic composites characterized by nonstandard, multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells, which the higher-order theory supersedes, confirms the need for this new model, and dramatically highlights the original model’s shortcomings for a certain class of unidirectional composites.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3