Affiliation:
1. Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115
Abstract
The behavior of a nano-scale cylindrical body (e.g., a fiber), lying on a substrate and acted upon by a combination of normal and tangential forces, is the subject of this investigation. As the scale decreases to the nano level, adhesion becomes an important issue in this contact problem. Thus, this investigation treats the two-dimensional plane strain elastic deformation of both the cylinder and the substrate during a rolling/sliding motion, including the effect of adhesion using the Maugis model. For the initiation of sliding, the Mindlin approach is used, whereas for rolling, the Carter approach is utilized. Each case is modified for nano-scale effects by including the effect of adhesion on the contact area and by using the adhesion theory of friction for the friction stress. Analytical results are given for the normal and tangential loading problems, including the initiation of sliding and rolling in terms of dimensionless quantities representing adhesion, cylinder size, and applied forces.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献