Contouring Medial Surface of Thin-Plate Structures Using Local Marching Cubes

Author:

Fujimori Tomoyuki1,Suzuki Hiromasa1,Kobayashi Yohei1,Kase Kiwamu2

Affiliation:

1. The University of Tokyo, Tokyo, Japan

2. The Institute of Physical and Chemical Research, Saitama, Japan

Abstract

This paper describes a new algorithm for contouring a medial surface from CT (computed tomography) data of a thin-plate structure. Thin-plate structures are common in mechanical structures, such as car body shells. When designing thin-plate structures in CAD (computer-aided design) and CAE (computer-aided engineering) systems, their shapes are usually represented as surface models associated with their thickness values. In this research, we are aiming at extracting medial surface models of thin-plate structures from their CT data for use in CAD and CAE systems. Commonly used isosurfacing methods, such as marching cubes, are not applicable to contour the medial surface. Therefore, we first extract medial cells (cubes comprising eight neighboring voxels) from the CT data using a skeletonization method to apply the marching cubes algorithm for extracting the medial surface. It is not, however, guaranteed that the marching cubes algorithm can contour those medial cells (in short, not “marching cubeable”). In this study, therefore we developed cell operations that correct topological connectivity to guarantee such marching cubeability. We then use this method to assign virtual signs to the voxels to apply the marching cubes algorithm to generate triangular meshes of a medial surface and map the thicknesses of thin-plate structures to the triangle meshes as textures. A prototype system was developed to verify some experimental results.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference11 articles.

1. An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids;Sherbrooke;IEEE Trans. Vis. Comput. Graph.

2. Distance-ordered Homotopic Thinning: a Skeletonization Algorithm for 3D Digital Images;Pudney;Comput. Vis. Image Underst.

3. Euclidean Skeletons;Malandain;Image and Vision Computing

4. Fast Visualization of Plane-like Structures in Voxel Data;Prohaska

5. Marching Cubes: A High Resolution 3D Surface Construction Algorithm;Lorensen

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3