Discrete-Time Well-Conditioned State Observer Design and Evaluation

Author:

Huh Kunsoo1,Jung Jongchul2,Stein Jeffrey L.3

Affiliation:

1. School of Mechanical Engineering, Hanyang University, Haengdang-dong 17th, Sungdong-ku, Seoul 133-791, Korea

2. Department of Precision Mechanical Engineering, Hanyang University, Haengdang-dong 17th, Sungdong-ku, Seoul 133-791, Korea

3. Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

Abstract

Model-based monitoring systems based on state observer theory often have poor performance with respect to accuracy, bandwidth, reliability (false alarms), and robustness. The above limitations are closely related to the ill-conditioning factors such as transient characteristics due to unknown initial values and round-off errors, and steady-state accuracy due to plant perturbations and sensor bias. In this paper, by minimizing the effects of the ill-conditioning factors, a well-conditioned observer is proposed for the discrete-time systems. A performance index is determined to represent the quantitative effects of the ill-conditioning factors and two design methods are described for the well-conditioned observers. The estimation performance of the well-conditioned observers is verified in simulations where transient as well as steady-state error robustness to perturbations is shown to be better than or equal to Kalman filter performance depending on the nature of modeling errors. The estimation performance is also demonstrated on an experimental setup designed and built for this purpose.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Kalman Filter Design via Selecting Performance Indices;Transactions of the Korean Society of Mechanical Engineers A;2005-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3