Influence of Ambient Pressure and Heating Power on the Thermal Runaway Features of Lithium-Ion Battery

Author:

Chen Xiantao1,Zhang Xu1,Wang Haibin1,Jia Jingyun1,Xie Song1,Zhi Maoyong1,Fu Ju1,Sun Qiang1

Affiliation:

1. College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China

Abstract

Abstract The thermal runaway hazards pose a serious threat to the application and transport of lithium-ion batteries on the aircraft. Hence, the researches of thermal safety in flight condition are necessary. In this study, the tests were conducted in a dynamic pressure chamber to study the effects of ambient pressure and heating power on the thermal runaway characteristics. The results show that the fierce behaviors of jet fire, deflagration, and explosion only were observed in high ambient pressure with high heating power. The open time of the safety valve is advanced as pressure from 95 kPa to 20 kPa. The parameters of heat release rate (HRR), total heat release (THR), cell surface temperature, peak concentration of CO2, and mass loss decrease as the descend of external pressure or heating power. The peak values of hydrocarbon (CHx) and CO increase with the descent of pressure but decrease as the reduction of heating power. The effects of ambient pressure on the thermal runaway (TR) fire behaviors mainly attribute to the low oxygen density. The time of heating and smoking may account for the difference of TR behaviors with various heating power. It is revealed that the fire risk and the hazards of toxic/flammable gas emissions are tightly relative to the TR behaviors. These results provide valuable proposals and inspiration for the safety warning and hazard reduction under low pressure.

Funder

National Key R&D Program of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3