A Direct Analysis of Two-Dimensional Elastic-Plastic Rolling Contact

Author:

Yu M.1,Moran B.1,Keer L. M.1

Affiliation:

1. Department of Civil Engineering, Northwestern University, Evanston, Ill. 60208

Abstract

A direct approach for elastic-plastic analysis and shakedown is presented and its application to a two-dimensional rolling contact problem is demonstrated. The direct approach consists of an operator split technique, which transforms the elastic-plastic problem into a purely elastic problem and a residual problem with prescribed eigenstrains. The eigenstrains are determined using an incremental projection method which is valid for nonproportional loading and both elastic and plastic shakedown. The residual problem is solved analytically and also by using a finite element procedure which can be readily generalized to more difficult problems such as three-dimensional rolling point contact. The direct analysis employs linear-kinematic-hardening plastic behavior and thus either elastic or plastic shakedown is assured, however, the phenomenon of ratchetting which can lead to incremental collapse, cannot be treated within the present framework. Results are compared with full elastic-plastic finite element calculations and a step-by-step numerical scheme for elastic-plastic analysis. Good agreement between the methods is observed. Furthermore, the direct method results in substantial savings in computational effort over full elastic-plastic finite element calculations and is shown to be a straightforward and efficient method for obtaining the steady state (shakedown) solution in the analysis of rolling and/or sliding contact.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VFZT bei zyklischer Belastung;Vereinfachte Fließzonentheorie;2023

2. A Theoretical Model for the Normal Contact Force of Two Elastoplastic Ellipsoidal Bodies;Journal of Applied Mechanics;2020-12-04

3. Further understanding of rolling contact fatigue in rolling element bearings - A review;Tribology International;2019-12

4. STPZ at Cyclic Loading;Simplified Theory of Plastic Zones;2016-06-30

5. Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads;SAE International Journal of Materials and Manufacturing;2016-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3