Novel Defect Location Method for Pressure Vessel by Using L (0, 2) Mode Guided Wave

Author:

Zhai Shuangmiao1,Zhou Shaoping2,Chen Shaojie1,Yang Bin1,Li Yong1

Affiliation:

1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China e-mail:

Abstract

Pressure vessel plays an increasingly important role in process industries, in which its performance degradation, such as crack and corrosion, may lead to serious accidents and significant economic losses. Guided wave-based method is a cost-effective means for pressure vessel rapid interrogation. In this paper, the method based on direct-wave and fuzzy C-means clustering algorithm (FCM) is proposed to locate defect for pressure vessel. Finite element (FE) simulation is applied to analyze the propagation characteristics of guided waves. The experiment using the method based on direct-wave and FCM has been conducted on the barrel and head with different sensor arrays, respectively. The variation rule of the direct-wave difference with different distance coefficients has been studied. By combining FCM with the direct-wave difference, the defects on barrel and head can be detected accurately. The defect inspection experiment for pressure vessel using ellipse imaging algorithm is conducted as well. The experimental results show that the method based on direct-wave and FCM can locate the defects on barrel and head of the pressure vessel effectively and accurately.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3