Performance of a Downstream Finned Solar Photovoltaic Thermal Air System

Author:

Franklin J. Charles1,Chandrasekar M.1,Sridharan M.2

Affiliation:

1. Department of Mechanical Engineering, University College of Engineering, BIT Campus, Tiruchirappalli 620024, India

2. Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Tiruchirappalli 621112, India

Abstract

Abstract A new photovoltaic thermal air (PVTa) system with fins in the downstream portion of the air channel was tested for its thermal and electrical performance in this work. For this purpose, two fin configurations were opted. One is a longitudinal fin oriented longitudinally along the air channel and the other is a wavy fin placed in the direction of air flow. The experiments were conducted between June and November months of the year 2018 on daily basis in the location of Tiruchirappalli, a city in Tamil Nadu state of India (10.82 latitude and 78.70 longitude). The results indicated that the PVTa system with downstream wavy fins performed thermally better than the PVTa system with downstream longitudinal fins. A fuzzy-based model was also developed for predicting the thermal and electrical performance of the newly developed solar PVTa collector. The fuzzy model forecasted the air outlet temperature, operating photovoltaic (PV) panel temperature, and power output with a net prediction accuracy of about 95%.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3