The Freestream Matching Condition for Stagnation Point Turbulent Flows: An Alternative Formulation

Author:

Abid R.1,Speziale C. G.2

Affiliation:

1. High Technology Corporation, NASA Langley Research Center, Hampton, VA 23681

2. Aerospace and Mechanical Engineering Department, Boston University, Boston, MA 02215

Abstract

The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises in the standard K–ε model results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production-equals-dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain—a turbulent flow for which the standard K–ε model does not predict such a simple equilibrium. The ad hoc adjustment that has been made in the constants of the ε-transport equation to eliminate this singularity is shown to be inconsistent for homogeneous plane-strain turbulence as well as other benchmark turbulent flows. An alternative means to eliminate this singularity—without compromising model predictions in more basic turbulent flows—is proposed based on the incorporation of nonequilibrium vortex stretching effects in the turbulent dissipation rate equation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence Modeling and Simulation;Handbook of Fluid Dynamics, Second Edition;2016-04-07

2. On fully self-preserving solutions in homogeneous turbulence;Journal of Turbulence;2007-01

3. Laser Repetitive Pulse Heating of Steel Surface: A Material Response to Thermal Loading;Journal of Manufacturing Science and Engineering;2002-07-11

4. Laser pulse heating of steel surfaces including impinging gas effect and variable properties;International Journal of Numerical Methods for Heat & Fluid Flow;2002-03

5. GAS JET IMPINGEMENT ON A SURFACE HAVING A LIMITED CONSTANT HEAT FLUX AREA: VARIOUS TURBULENCE MODELS;Numerical Heat Transfer, Part A: Applications;1999-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3