Theoretical Analysis of Grinding Chatter

Author:

El-Wardani T.1,Sadek M. M.2,Younis M. A.2

Affiliation:

1. Alexandria University, Egypt

2. Kuwait University, Kuwait

Abstract

A mathematical model is proposed for the prediction of the grinding process chatter. It considers the machine structure as a multidegree of freedom system and takes into account various parameters affecting the process stability such as the workpiece and grinding wheel regeneration, wheel loading and its elastic characteristics. This model is based on a nonlinear relationship with the time factor which is introduced by the loading effect. Three-dimensional stability charts were predicted for the simultaneous variation of both the grinding wheel wear and loading. These stability charts relate the grinding wheel and workpiece speeds to the instantaneous limiting width of grinding. The validity of this mathematical model has been assessed with the aid of a series of chatter tests which were carried out in specially designed experiments. These tests show good quantitative and qualitative correlation between the theoretical results and those experimentally obtained. It has been found that the level of stability decreases with time, indicating the possibility of chatter occurring at a stable width of cut.

Publisher

ASME International

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Manufacturing Process Control;Journal of Manufacturing Science and Engineering;2020-09-28

2. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic;Mechanical Systems and Signal Processing;2020-08

3. Study on Vibration Characteristics of Polishing Rod for Polishing Aeroengine Blade with Abrasive Cloth Wheel;Mathematical Problems in Engineering;2020-05-30

4. Modeling of high-speed milling process with frictional effect;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2012-09-24

5. Research on Surface Morphology of Three-Dimensional in CNC Cylindrical Grinding;Advanced Materials Research;2011-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3