Harnessing Hydrodynamic Cavitation for Surface Modification and Strengthening

Author:

Pang Hao1,Ngaile Gracious1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 26795

Abstract

Abstract Hydrodynamic cavitation (HC) shows promise for surface modification and strengthening. While previous research has explored its potential for surface hardening and polishing, the application of cavitation for surface texturing remains relatively unexplored. This paper aims to investigate the feasibility of using hydrodynamic cavitation for surface texturing and hardening, as well as identify the key process parameters that influence the outcomes. Computational fluid dynamics (CFD) simulations are utilized to analyze the behavior of cavitation under various conditions, and experimental validation is conducted. The study examines the influence of different chamber insert geometries on cavitation intensity and energy release. It also investigates the effect of process parameters on surface morphology and hardness. The results demonstrate that hydrodynamic cavitation can effectively strengthen specific regions of interest when the cavitation intensity is controlled. However, the formation of surface texture through plastic deformation may be limited to ductile materials or those with low yield strength. The study highlights the significance of utilizing suitable cavitation generators capable of continuously generating cavitation for consistent and controlled intensity. Preliminary results suggest that innovative vortex-based devices have the potential to deliver controlled cavitation intensity to desired areas.

Funder

National Sleep Foundation

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3