SUPG-Based Finite Element Method for Direct Material Property Determination Utilizing Full-Field Deformation Measurements

Author:

Rajan Kattil Sreehari1,Bazilevs Yuri2,Sutton Michael1,Sockalingam Subramani1,Kodagali Karan1,Weerasooriya Tusit3,Alexander Stephen4

Affiliation:

1. University of South Carolina Department of Mechanical Engineering, , Columbia, SC 29208

2. Brown University School of Engineering, , Providence, RI 02912

3. DEVCOM Army Research Laboratory, Aberdeen, MD 21005

4. SURVICE Engineering Company , Belcamp, MD 21017

Abstract

Abstract A direct approach is developed using Streamline Upwind Petrov Galerkin (SUPG) concepts to determine the spatially varying property distribution in a nominally heterogeneous material. The approach is based on successful development of a SUPG-stabilized inverse finite element approach to solve the differential equations of equilibrium in terms of material properties, resulting in a matrix form [A] {E} = {R}, where [A] is a known function of measured axial strains (e.g., from StereoDIC) and axial positions, {R} is a known function of axial body forces, applied loads and reactions, and {E} is a vector of unknown material properties at discrete axial locations. Theoretical and computational developments for the SUPG-stabilized approach are described in detail for one-dimensional applications (e.g., heterogeneous tensile/compression specimens, tensile/compressive surfaces of beams). Property predictions using the SUPG method with analytic strains and additive Gaussian noise are shown to be in excellent agreement with known property values, whereas predictions using the classical Bubnov–Galerkin method exhibit large, spurious oscillations in the predicted material properties. To demonstrate the methodology using experimental measurements, a 3D-printed heterogeneous tensile specimen with independently measured material properties is tested and full-field strains measured at several load levels. Results confirm that SUPG finite element property predictions are in very good agreement with independently determined values at each load level along the specimen length, providing confidence that the SUPG FE analysis framework developed in this work is stable and extendable to multiple dimensions.

Funder

Army Research Office

U.S. Army Research Laboratory

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3