Thermal Modeling of Absolute Cryogenic Radiometers

Author:

Zhang Z. M.1,Datla R. U.1,Lorentz S. R.1,Tang H. C.2

Affiliation:

1. Radiometric Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

2. Scientific Computing Environments Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

This work consists of a detailed thermal modeling of two different radiometers operated at cryogenic temperatures. Both employ a temperature sensor and an electrical-substitution technique to determine the absolute radiant power entering the aperture of a receiver. Their sensing elements are different: One is a germanium resistance thermometer, and the other is a superconducting kinetic-inductance thermometer. The finite element method is used to predict the transient and steady-state temperature distribution in the receiver. The nonequivalence between the radiant power and the electrical power due to the temperature gradient in the receiver is shown to be small and is minimized by placing the thermometer near the thermal impedance. In the radiometer with a germanium resistance thermometer, the random noise dominates the uncertainty for small incident powers and limits the ultimate sensitivity. At high power levels, the measurement accuracy is limited by the uncertainty of the absorptance of the cavity. Recommendations are given based on the modeling for future improvement of the dynamic response of both radiometers.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A soft X-ray cryogenic radiometer built on BSRF;Radiation Detection Technology and Methods;2018-06-05

2. Experimental measurements and noise analysis of a cryogenic radiometer;Review of Scientific Instruments;2014-07

3. Reflectance measurements for black absorbers made of vertically aligned carbon nanotubes;Reflection, Scattering, and Diffraction from Surfaces II;2010-08-19

4. Chapter 1 Overview of Radiation Thermometry;Experimental Methods in the Physical Sciences;2009

5. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard;Journal of Research of the National Institute of Standards and Technology;2006-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3