Dual Representation Methods for Efficient and Automatable Analysis of 3D Plates

Author:

Mishra Vikalp1,Suresh Krishnan1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 Univeristy Avenue, Madison, WI 53706

Abstract

It is well recognized that 3D finite element analysis is inappropriate for analyzing thin structures such as plates and shells. Instead, a variety of highly efficient and specialized 2D methods have been developed for analyzing such structures. However, 2D methods pose serious automation challenges in today’s 3D design environment. Specifically, analysts must manually extract cross-sectional properties from a 3D computer aided design (CAD) model and import them into a 2D environment for analysis. In this paper, we propose two efficient yet easily automatable dual representation methods for analyzing thin plates. The first method exploits standard off-the-shelf 3D finite element packages and achieves high computational efficiency through an algebraic reduction process. In the reduction process, a 3D plate bending stiffness matrix is constructed from a 3D mesh and then projected onto a lower-dimensional space by appealing to standard 2D plate theories. In the second method, the analysis is carried out by integrating 2D shape functions over the boundary of the 3D plate. Both methods do not entail extraction of the cross-sectional properties of the plate. However, the user must identify the plate or thickness direction. The proposed methodologies are substantiated through numerical experiments.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference29 articles.

1. Reflections on the Theory of Elastic Plates;Reissner;Appl. Mech. Rev.

2. On Kinematical Assumptions of Refined Theories of Plates: A Survey;Jemielita;Trans. ASME, J. Appl. Mech.

3. A Survey of Recent Shell Finite Element;Yang;Int. J. Numer. Methods Eng.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast iterative solvers for thin structures;Finite Elements in Analysis and Design;2011-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3