Investigation and Validation of Finite Element Analysis Material Modeling for Integrity Assessment of Indented Pipe Under Static and Cyclic Loading

Author:

Al-Muslim Husain M.1,Arif Abul Fazal M.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Mechanical damage in transportation pipelines is a threat to its structural integrity. There are many parameters that affect the severity of the mechanical damage which are related to the pipe geometry and material properties, the defect geometry and boundary conditions, the loading cycle, and the pipe state of stress. To understand those effects, the utilization of numerical finite element analysis (FEA) has been used extensively to supplement the expensive; and thus, limited full-scale tests. The actual pipe material exhibits a number of special features including nonlinear elasticity, anisotropy, and cyclic softening which need advanced material modeling techniques. However, the success of the numerical material model to actually simulate the pipe material behavior could not be studied in detail previously due to the insufficient experimental data especially in cyclic pressure loading. The objective of this paper is to investigate the effect of material modeling using FEA on the integrity assessment of dented pipe under static and cyclic loading by simulating pipe denting followed by subsequent pressure cycles. Several material models are tested and calibrated against the measurements of full-scale tests to find the effects of material modeling assumptions (e.g. isotropy, yield point, hardening rule). The results show that a combined material model simulating all special features of nonlinear elasticity, anisotropy, and cyclic softening gives a very close representation of experimental data in terms of strain values and fatigue cycles to failure. Therefore, detailed material properties are needed to conduct accurate integrity assessments of dented pipes especially under cyclic conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference31 articles.

1. Analysis of DOT Reportable Incidents for Gas Transmission and Gathering System Pipelines, Incident Data—1985 to 1997,2000

2. Risk Assessment of Selected Saudi Aramco Pipelines;Advantica Ltd.,2004

3. Criteria for Dent Acceptability of Offshore Pipelines,” Final Report Prepared to Pipeline Research Council International,1992

4. Cyclic Pressure Fatigue Life of Pipelines With Plain Dents, Dents With Gouges, and Dents With Welds,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3