Thermal Aspects of a Novel Viscous Pump

Author:

Sharatchandra M. C.1,Sen M.1,Gad-el-Hak M.1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556

Abstract

We have previously introduced a novel method for pumping fluids via a viscous mechanism. The device essentially consists of a cylindrical rotor eccentrically placed in a channel, and it is suited for hauling highly viscous polymers in macroducts, or more common fluids in microducts. Under certain operating conditions, viscous dissipation can be important, and a significant attendant temperature rise can have adverse effects on the pump operation. For this reason, we have conducted a numerical experiment to characterize the associated phenomena. The coupled system of the two-dimensional Navier-Stokes equations, with temperature-dependent viscosity, and the energy equation, with viscous dissipation terms retained, are solved using a finite-volume method. Different types of thermal boundary conditions at the rotor-fluid interface are explored in the numerical scheme. An approximate theoretical model is also developed to analyze flow in the region between the rotor and the nearest plate (for small gaps). The results indicate that although the bulk temperature rise is minimal for typical microscale situations, significantly steep temperature gradients are observed in the region between the rotor and the nearest channel wall where the most intense shear stress occurs. For certain combinations of Re, Ec, and Pr, temperature rises along the channel wall of the order of 30 K were calculated. Moreover, for very small values of this gap, large errors in the computed flowrates and pumping power estimates can arise for large Brinkman numbers, if the effects of viscous dissipation are ignored. Furthermore, the existence of an optimum value of rotor position, such that the bulk velocity is a maximum, is demonstrated. These findings are significant, as they are indicative of trends associated with the flow of highly viscous polymeric liquids, where much larger temperature rises and their attendant degradation in performance are likely to occur.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3