Heating Analysis of a Water Droplet in Between Multi-Wall Hydrophobic Surfaces

Author:

Al-Sharafi Abdullah12,Yilbas Bekir S.32,Sahin Ahmet Z.32,Al-Qahtani Hussain4

Affiliation:

1. Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

2. K.A.CARE Energy Research & Innovation Center at Dhahran, Dhahran 31261, Saudi Arabia

3. Department of Mechanical Engineering & Centre of Excellence for Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

4. Department of Mechanical Engineering & Centre of Excellence for Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Abstract Droplet heat transfer in between parallelly located superhydrophobic plates is examined. The thermal field inside the droplet is predicted by adopting the experimental conditions. The influence of plates spacing (heights) on the thermal response of the droplet fluid is investigated. Particle injection velocimetry (PIV) is used to validate the velocity predictions. We demonstrated that predictions of flow velocity are in agreement with those of the PIV results. The heating of the droplet in the absence of the top plate gives four circulation cells in the droplet. Once the top superhydrophobic plate is introduced, the flow structure alters, and the number of the circulating structures reduces to two. Lowering the height of the plates increases the droplet Laplace pressure while modifying the fluid flow and thermal behavior. The Bond number is lower than one for all the cases considered; hence, demonstrating that the Marangoni force affects the formation of the circulation cells. The cells redistribute the heated fluid in the droplet interior, which is clearly apparent for the plates with small heights. Temperature enhancement in the droplet bottom section is attributed to the flow current formed due to heat diffusion. The Nusselt number corresponding to the bottom plate increases as the plate heights reduces; however, the opposite is true for that corresponding to the top plate.

Funder

King Fahd University of Petroleum and Minerals

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3