Suction and Injection Impacts on Casson Nanofluid With Gyrotactic Micro-organisms Over a Moving Wedge

Author:

Jabeen K.1,Mushtaq M.1,Akram Muntazir R. M.1

Affiliation:

1. Department of Mathematics, University of the Engineering and Technology, Lahore 54890, Pakistan

Abstract

Abstract This work deals with the effects of suction and injection on Casson nanofluid around a moving wedge under the influence of gyrotactic micro-organisms along with viscous and ohmic dissipation. The governing system of highly coupled nonlinear partial differential equations together with assisting boundary conditions is converted by applying suitable similarity transformations, into a set of nonlinear ordinary differential equations. The obtained flow model is solved numerically by bvp4c (matlab) procedure. The accuracy of the flow model under consideration is validated by employing another well-known mathematical technique Runge–Kutta-Fehlberg (RKF) having good agreement while comparing the numerical results obtained by bvp4c for both suction and injection cases. Impacts of various pertinent parameters active in the flow model such as thermophoresis and Brownian motion, moving wedge, magnetic field, viscous and ohmic dissipation are numerically calculated for both suction and injection flow situations and also presented graphically. It is observed that the increase in casson parameter enhances the velocity but declines the density of motile organism, concentration and temperature for suction as well as injection flow case. The impacts of mass transfer rate of gyrotactic micro-organisms, Nusselt and Sherwood numbers for various fluid parameters are numerically presented in tabular form, separately for both suction and injection. One of the important observations of this study is that the suction or injection plays a key role in controlling boundary layer flow and brings stability in the flow. Moreover, rate of heat and mass transfer get enhanced in the existence of gyrotactic micro-organisms. Further, it would be worth mentioning that physical behavior of this flow problem coincides very well with already published literature either graphically or in tabular representation.

Publisher

ASME International

Subject

Mechanical Engineering

Reference62 articles.

1. Some Approximate Solution of the Boundary-Layer Equation;Philos. Mag.,1931

2. On an Equation Occurring in Falkner and Skan's Approximate Treatment of the Equations of the Boundary Layer,1937

3. Further Solutions of the Falkner-Skan Equation,1954

4. Boundary Layers With Small Departures From the Falkner-Skan Profile;J. Fluid Mech.,1968

5. Heat and Mass Transfer in a Saturated Porous Wedge With Impermeable Boundaries;Int. J. Heat Mass Transfer,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3