An Approach to Bayesian Optimization in Optimizing Weighted Tchebycheff Multi-Objective Black-Box Functions

Author:

Biswas Arpan1,Fuentes Claudio1,Hoyle Christopher1

Affiliation:

1. Oregon State University

Abstract

Abstract Bayesian optimization (BO) is a low-cost global optimization tool for expensive black-box objective functions, where we learn from prior evaluated designs, update a posterior surrogate Gaussian process model, and select new designs for future evaluation using an acquisition function. This research focuses upon developing a BO model with multiple black-box objective functions. In the standard multi-objective optimization problem, the weighted Tchebycheff method is efficiently used to find both convex and non-convex Pareto frontier. This approach requires knowledge of utopia values before we start optimization. However, in the BO framework, since the functions are expensive to evaluate, it is very expensive to obtain the utopia values as a priori knowledge. Therefore, in this paper, we develop a Multi-Objective Bayesian Optimization (MO-BO) framework where we calibrate with Multiple Linear Regression (MLR) models to estimate the utopia value for each objective as a function of design input variables; the models are updated iteratively with sampled training data from the proposed multi-objective BO. The iteratively estimated mean utopia values are used to formulate the weighted Tchebycheff multi-objective acquisition function. The proposed approach is implemented in optimizing a thin tube design under constant loading of temperature and pressure, with multiple objectives such as minimizing the risk of creep-fatigue failure and design cost along with risk-based and manufacturing constraints. Finally, the model accuracy with and without MLR-based calibration is compared to the true Pareto solutions. The results show potential broader impacts, future research directions for further improving the proposed MO-BO model, and potential extensions to the application of large-scale design problems.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3