Effect of Elongation of a Rod on Strain Inhomogeneity and Shape Change During the Compression-Type Forming Process

Author:

Hwang Joong-Ki1

Affiliation:

1. Korea University of Technology & Education School of Mechatronics Engineering, , Cheonan 31253 , South Korea

Abstract

Abstract The influence of elongation on the strain inhomogeneity and shape change in twinning-induced plasticity steel rod is systematically investigated to understand the macroscopic shear band (MSB) formation mechanism and to decrease the strain inhomogeneity during the compression-type forming processes. Specimens fabricated by rod flat rolling with elongation (3D rod) and by plane compression without elongation (2D rod) are compared using both finite element analysis and experiment. Despite the similar final product shape, the 2D rod presents a lower effective strain at the surface region than the 3D rod, leading to a high strain inhomogeneity. The higher effective strain at the surface region of the 3D rod is mainly attributed to the elongation of the 3D rod during the rolling. In contrast, the 2D rod exhibits strong dead metal zones owing to the lack of elongation of the specimen. Therefore, the formation of MSBs or strain inhomogeneity of a specimen can be reduced by increasing the elongation of the specimens during the forming process. Both the contact width and lateral spread of the 3D rod are lower than those of the 2D rod because of the elongation of the 3D rod originating from the slip effect at the rod–roll interface during the rolling process. The small frictional effect at the rod and roll interface increased the elongation of the rod, leading to a decrease in the strain inhomogeneity and lateral spreading in the 3D rod.

Funder

National Research Foundation of Korea

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3