Affiliation:
1. University of Florida Environmental Engineering Sciences, , Gainesville, FL 32611
2. University at Buffalo Civil, Structural, and Environmental Engineering, , Buffalo, NY 14260
Abstract
Abstract
Disassembly is an essential process for the recovery of end-of-life (EOL) electronics in remanufacturing sites. Nevertheless, the process remains labor-intensive due to EOL electronics’ high degree of uncertainty and complexity. The robotic technology can assist in improving disassembly efficiency; however, the characteristics of EOL electronics pose difficulties for robot operation, such as removing small components. For such tasks, detecting small objects is critical for robotic disassembly systems. Screws are widely used as fasteners in ordinary electronic products while having small sizes and varying shapes in a scene. To enable robotic systems to disassemble screws, the location information and the required tools need to be predicted. This paper proposes a computer vision framework for detecting screws and recommending related tools for disassembly. First, a YOLOv4 algorithm is used to detect screw targets in EOL electronic devices and a screw image extraction mechanism is executed based on the position coordinates predicted by YOLOv4. Second, after obtaining the screw images, the EfficientNetv2 algorithm is applied for screw shape classification. In addition to proposing a framework for automatic small-object detection, we explore how to modify the object detection algorithm to improve its performance and discuss the sensitivity of tool recommendations to the detection predictions. A case study of three different types of screws in EOL electronics is used to evaluate the performance of the proposed framework.
Funder
National Science Foundation
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献