Reducing Residual Stress in 7050 Aluminum Alloy Die Forgings by Heat Treatment

Author:

Robinson J. S.1,Tanner D. A.2

Affiliation:

1. Department of Materials Science and Technology, University of Limerick, Limerick, Ireland

2. Department of Manufacturing and Operations Engineering, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland

Abstract

Aerospace aluminum alloy forgings can have the residual stresses arising from heat treatment reduced by modification to the quench cooling rates and subsequent aging treatments. A series of propeller hubs usually made from the alloy 2014 have been closed die forged from the less quench sensitive alloy 7050. These forgings have been subjected to various quenching and aging treatments in an attempt to improve the balance of mechanical properties with the residual stress magnitudes. These forgings were not amenable to stress relieving by cold compression or stretching. Warm water (60°C) and boiling water quenches are investigated in addition to quenching into molten salt (200°C) and uphill quenching from −196°C. Various dual aging treatments including retrogression and reaging have been evaluated in an attempt to optimize low residual stress magnitudes with mechanical properties. Residual stresses determined by the center hole-drilling strain-gauge method are reported in addition to electrical conductivity, stress corrosion cracking, fracture toughness, initiation fatigue, and tensile mechanical property variations. It was found that quenching into boiling water and salt at 200°C did substantially reduce the residual stress but had only a small detrimental effect on the majority of the properties measured. However, the influence of quench rate on fracture toughness was much more significant. This is attributed to both coarse grain boundary precipitation and heterogeneous precipitation of η on Al3Zr dispersoids within the grains, which promotes easier crack propagation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

1. Heat Treating of Aluminum Alloys

2. U.S. Department of Defense, 2003, “Metallic Materials and Elements for Aerospace Vehicle Structures,” Document No. MIL-HDBK-5J.

3. Aluminum Alloys for Aircraft Structures;Cassada;Advanced Materials and Processes

4. Uphill Quenching of Aluminum: Rebirth of a Little-Known Process;Croucher;Heat Treating

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3