Processing Defects and Resulting Mechanical Properties After Metal Injection Molding

Author:

Gelin J. C.1,Barriere Th.1,Song J.1

Affiliation:

1. Department of Applied Mechanics, FEMTO-ST Institute, ENSMM Besançon, 26 Rue de l’Epitaphe, 25030 Besançon, France

Abstract

The paper is concerned with occurrence of processing defects and resulting mechanical properties associated with material processing by metal injection molding (MIM). MIM process is a multistep one that consists first in the injection of metallic powders mixed with a thermoplastic binder, followed by a debinding stage that permits to evacuate the polymeric binder, and then followed by a sintering stage by solid state diffusion that normally leads to a nearly dense component. The main defects arising during MIM processing are associated with powder segregation during injection molding, and uncompleted or heterogeneous mechanical properties resulting from solid state diffusion. The paper first describes a biphasic fluid flow approach that can accurately predict powder volume fraction after injection molding and consequently the associated segregation defects. This analysis is followed and continued by a proper sintering model based on an elastic-viscous analogy that predicts the resulting local densities after sintering and also associated defects. So, from the two subsequent models, it becomes possible to get the final powder densities after processing and to localize the possible resulting defects. This analysis is completed by an analysis using a porous material model to get the final resultant mechanical properties after processing.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Analysis of Temperature Effects During Cooling in Powder Injection Molding;Fox;Int. J. Powder Metall.

2. Finite Element Analysis of the Debinding and Densification Phenomena in the Process of Metal Injection Molding;Dutilly;J. Mater. Process. Technol.

3. Experiments and Computational Modeling of Metal Injection Molding for Forming Small Parts;Gelin;CIRP Ann.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3