Film Cooling Modeling for Gas Turbine Nozzles and Blades: Validation and Application

Author:

Andrei Luca1,Innocenti Luca1,Andreini Antonio2,Facchini Bruno2,Winchler Lorenzo2

Affiliation:

1. GE Oil & Gas, via Felice Matteucci 2, Florence 50127, Italy e-mail:

2. Department of Industrial Engineering, University of Florence, via di Santa Marta 3, Florence 50139, Italy e-mail:

Abstract

The design of modern gas turbines cooling systems cannot be separated from the use of computational fluid dynamics (CFD) and the accurate estimation of the effect of film cooling. Nevertheless, a complete modeling of film cooling holes within the computational domain requires an effort both from the point of view of the mesh creation and from computational time. It is here proposed a new way to model the film cooling (FCM), capable of representing the effect of the coolant at hole exit. This is possible due to the introduction of local source terms near the hole exit in a delimited portion of the domain, avoiding the meshing process of perforations. The goal is to provide a reliable and accurate tool to simulate film-cooled turbine blades and nozzles without having to explicitly mesh the holes. The model was subjected to an intensive validation campaign, composed of two phases. During the first one, FCM results are compared to experimental data and numerical results (obtained with complete cooling holes meshing) on a series of test cases reproducing flat plate cooling configurations for different coolant conditions (in terms of blowing and density ratio). In the second phase, a film-cooled vane test case has been studied, in order to consider a real injection system and flow conditions: FCM predictions are compared to an in-house developed correlative approach and full conjugate heat transfer (CHT) results. Finally, a comparison between FCM predictions and experimental data was performed on an actual nozzle of a GE Oil & Gas heavy-duty gas turbine, in order to prove the feasibility of the procedure. The presented film cooling model (FCM) proved to be a feasible and reliable tool, able to evaluate adiabatic effectiveness, simplifying the design phase avoiding the meshing process of perforations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3