Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade

Author:

Nasir Shakeel1,Carullo Jeffrey S.1,Ng Wing-Fai1,Thole Karen A.1,Wu Hong1,Zhang Luzeng J.2,Moon Hee Koo2

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. Heat Transfer Department, Solar Turbines Inc., San Diego, CA 92186

Abstract

This paper experimentally and numerically investigates the effects of large scale high freestream turbulence intensity and exit Reynolds number on the surface heat transfer distribution of a turbine vane in a 2D linear cascade at realistic engine Mach numbers. A passive turbulence grid was used to generate a freestream turbulence level of 16% and integral length scale normalized by the vane pitch of 0.23 at the cascade inlet. The base line turbulence level and integral length scale normalized by the vane pitch at the cascade inlet were measured to be 2% and 0.05, respectively. Surface heat transfer measurements were made at the midspan of the vane using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.75, and 1.01, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 9×105, 1.05×106, and 1.5×106 based on a vane chord. The experimental results showed that the large scale high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the vane as compared to the low freestream turbulence case and promoted a slightly earlier boundary layer transition on the suction surface for exit Mach 0.55 and 0.75. At nominal conditions, exit Mach 0.75, average heat transfer augmentations of 52% and 25% were observed on the pressure and suction sides of the vane, respectively. An increased Reynolds number was found to induce an earlier boundary layer transition on the vane suction surface and to increase heat transfer levels on the suction and pressure surfaces. On the suction side, the boundary layer transition length was also found to be affected by increase changes in Reynolds number. The experimental results also compared well with analytical correlations and computational fluid dynamics predictions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3