Actuator Gain Distributions to Analytically Meet Specified Performance Capabilities in Serial Robot Manipulators

Author:

Rios Oziel1,Tesar Delbert1

Affiliation:

1. Robotics Research Group, Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78758

Abstract

A serial robotic manipulator arm is a complex electromechanical system whose performance is characterized by its actuators. The actuator itself is a complex nonlinear system whose performance can be characterized by the speed and torque capabilities of its motor, and its accuracy depends on the resolution of the encoder as well as its ability to resist deformations under load. The mechanical gain associated with the transmission is critical to the overall performance of the actuator since it amplifies the motor torque, thus improving the force capability of the manipulator housing it, reduces the motor speed to a suitable output speed operating range, and amplifies the stiffness improving the precision under load of the overall system. In this work, a basic analytic process that can be used to manage the actuator gain parameter to obtain an improved arm design based on a set of desired/required performance specifications will be laid out. Key to this analytic process is the mapping of the actuator parameters (speed, torque, stiffness, and encoder resolution) to their effective values at the system output via the mechanical gains of the actuators as well as the effective mechanical gains of the manipulator. This forward mapping of the actuator parameters allows the designer to determine how each of the parameters influences the functional capacity of the serial manipulator arm. The actuator gains are then distributed along the effective length of the manipulator to determine their effects on the performance capabilities of the system. The analytic formulation is also demonstrated to be effective in addressing the issue of configuration management of serial robotic manipulators where the goal is to assemble a system that meets some required performance specifications. To this end, two examples demonstrating a solution of the configuration management problem are presented. The analytic process developed based on the mapping of the mechanical parameters of the actuator to their effective values at the system output is shown to dramatically reduce the effort in the initial phases of the design process, meaning that the number of design iterations can be dramatically reduced.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference25 articles.

1. Ulrich, K. T., Tuttle, T. T., Donoghue, J. P., and Townsend, W. T., 1995, “Intrinsically Safer Robots,” Barrett Technology, Inc., Project Report.

2. IEEE Robotics and Automation Society, 2007, Technical Committee on Service Robots, www.service-robots.org

3. Thirty-Year Forecast: The Concept of a Fifth Generation of Robotics-The Super Robot;Tesar;Manuf. Rev.

4. A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design;Asada;ASME J. Dyn. Syst., Meas., Control

5. Optimal Actuator Sizing for Robotic Manipulators Based on Local Dynamic Criteria;Thomas;ASME J. Mech., Transm., Autom. Des.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3