Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear

Author:

Dogu Yahya1,Sertçakan Mustafa C.1,Bahar Ahmet S.1,Pişkin Altuğ2,Arıcan Ercan2,Kocagül Mustafa2

Affiliation:

1. Department of Mechanical Engineering, Kirikkale University, Yahsihan, Kirikkale 71450, Turkey e-mail:

2. TUSAS Engine Industries, Inc. (TEI), Eskisehir 26003, Turkey e-mail:

Abstract

Conventional labyrinth seal applications in turbomachinery encounter a permanent teeth tip damage and wear during transitional operations. This is the dominant issue that causes unpredictable seal leakage performance degradation. Since the gap between the rotor and the stator changes depending on engine transitional operations, labyrinth teeth located on the rotor/stator wear against the stator/rotor. This wear is observed mostly in the form of the labyrinth teeth becoming a mushroom shape. It is known that, as a result of this tooth tip wear, leakage performance permanently decreases, which negatively affects the engine's overall efficiency. However, very limited information about leakage performance degradation caused by mushroom wear is available in open literature. This paper presents a study that numerically quantifies leakage values for various radii of mushroom-shaped labyrinth teeth by changing tooth-surface clearance, pressure ratio, number of teeth, and rotor speed. Analyzed parameters and their ranges are mushroom radius (R = 0–0.508 mm), clearance (cr = 0.254–2.032 mm), pressure ratio (Rp = 1.5–3.5), number of teeth (nt = 1–12), and rotor speed (n = 0–80 krpm). Computational fluid dynamics (CFD) analyses were carried out by employing compressible turbulent flow in 2D axisymmetrical coordinate system. CFD leakage results were also compared with well-known labyrinth seal semi-empirical correlations. Given a constant clearance, leakage increases with the size of the mushroom radius that forms on the tooth. This behavior is caused by less flow separation and flow disturbance, and the vena contracta effect for flow over the smoothly shaped mushroom tooth tip compared to the sharp-edged tooth tip. This leakage increase is higher when the tooth tip wear is considered as an addition to the unworn physical clearance, since the clearance dominates the leakage. The leakage affected by the number of teeth was also quantified with respect to the mushroom radius. The rotational effect was also studied as a secondary parameter.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. Sealing Technology for Aircraft Gas Turbine Engines,1974

2. Sealing in Turbomachinery,2006

3. Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seal,2007

4. Labyrinth Seal Leakage Equation,2009

5. Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals;ASME J. Turbomach.,1992

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3