Measurement of Local Convective Heat Transfer Coefficients With Temperature Oscillation IR Thermography and Radiant Heating

Author:

Freund S.1,Kabelac S.1

Affiliation:

1. Helmut-Schmidt-University of the Federal Armed Forces-Hamburg, Hamburg, Germany

Abstract

A method using temperature oscillations to measure local convection coefficients from the outside of a heat-transferring wall has been developed. This method is contact-free, employing radiant heating with a laser and an IR camera for surface temperature measurements. The numerical model extends previous research to three dimensions and allows for rapid evaluation of the convection coefficients distribution of sizable heat exchanger areas. The technique relies first on experimental data of the phase-lag of the surface temperature response to periodic heating, and second on a numerical model of the heat-transferring wall that computes the local convection coefficients from the processed data. The temperature data processing includes an algorithm for temperature drift compensation and Single Frequency Discrete Fourier Transformations. The inverse heat conduction problem of deriving a surface map of convection coefficients from the phase-lag data is solved with a new numerical approach based on a complex 3-D finite-difference method. To validate the experimental approach, measurements of the temperature response of a semi-infinite specimen were analyzed. The results obtained were within 1.6% agreement with the analytical solution. The numerical model was verified by comparison with data generated by the FEM program ANSYS. The results of preliminary experiments investigating the local Nusselt number of water entering a tube are in agreement with established correlations. Future applications of this method will involve an aerodynamic vortex generator in a wind tunnel and plate heat exchangers. Another possible application of the experimental method is non-destructive testing of materials known as Lock-In Thermography.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3