Mechanism of Mild to Severe Wear Transition in Alpha-Alumina

Author:

Jahanmir S.1,Dong X.1

Affiliation:

1. Tribology Group, National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

Friction and wear experiments were conducted on high purity alpha-alumina sliding against a similar material in air under different contact loads and at temperatures ranging from 23°C to 900°C. Experimental results indicate that tribochemical reactions between water vapor and alpha-alumina at room temperature produce aluminum hydroxide which results in relatively low coefficients of friction and low wear rates. Both the coefficient of friction and the wear rate of alumina were low at intermediate temperatures (200°C to 800°C), if the contact stress was below a threshold value. Above this load, wear occurred by fracture, the wear coefficient exceeded a value of 10−4, and the coefficient of friction increased to 0.90. At 900°C, the coefficient of friction was 0.40 and the wear coefficient was reduced to a value less than 10−6, because of the formation of a silicon-rich layer on the wear track. A contact mechanics model based on linear elastic fracture mechanics indicated that propagation of cracks from pre-existing flaws controls the onset of catastrophic wear in the intermediate temperature range.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3