Distributions of Stretch and Rotation in Polycrystalline OFHC Cu

Author:

Clayton J. D.1,Schroeter B. M.1,McDowell D. L.1,Graham S.2

Affiliation:

1. G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. Sandia National Laboratories, Livermore, CA

Abstract

High resolution experimental characterization of material stretch and rotation fields in relatively fine-grained polycrystals has been limited, inhibiting direct comparison with predictions of crystal plasticity theory. In this study, micron scale grids used more commonly in etching of substrates for microelectronic circuits were deposited on specimens of Oxygen Free High Conductivity Copper (OFHC Cu) subsequently subjected to uniaxial compressive deformations to effective strain levels up to unity. Material stretch and rotation fields were assessed for fields of view encompassing on the order of 20 grains. Some rather striking features emerge, including the apparent relative lack of deformation in regions sized on the order of large grains, and the apparent concentration of stretch and rotation in bands surrounding these relatively undeformed areas. Comparisons are drawn with results of 3D crystal plasticity calculations performed on digitized grain structures that conform to representative microstructures in terms of initial grain size and shape distributions. The crystal plasticity simulations predict regions of relatively large rotation and relatively localized stretch traversing multiple grains. The numerical solutions also exhibit slightly higher local stresses in the vicinity of grain boundaries and triple points than in grain interiors, a phenomenon attributed to local lattice misorientation among neighboring grains. However, the crystal plasticity calculations do not, in an average sense, predict larger-than-average maximum stretch or rotation in the grain boundary regions. The numerical solutions are also quite sensitive to initial lattice orientations assigned to the grains. Comments are made regarding the segmentation of slip within the grains and its implications for modeling, based upon direct comparison of results from experiments and simulations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3