An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil

Author:

Hu Hui1,Yang Zifeng1

Affiliation:

1. Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

Abstract

An experimental study was conducted to characterize the transient behavior of laminar flow separation on a NASA low-speed GA (W)-1 airfoil at the chord Reynolds number of 70,000. In addition to measuring the surface pressure distribution around the airfoil, a high-resolution particle image velocimetry (PIV) system was used to make detailed flow field measurements to quantify the evolution of unsteady flow structures around the airfoil at various angles of attack (AOAs). The surface pressure and PIV measurements clearly revealed that the laminar boundary layer would separate from the airfoil surface, as the adverse pressure gradient over the airfoil upper surface became severe at AOA≥8.0deg. The separated laminar boundary layer was found to rapidly transit to turbulence by generating unsteady Kelvin–Helmholtz vortex structures. After turbulence transition, the separated boundary layer was found to reattach to the airfoil surface as a turbulent boundary layer when the adverse pressure gradient was adequate at AOA<12.0deg, resulting in the formation of a laminar separation bubble on the airfoil. The turbulence transition process of the separated laminar boundary layer was found to be accompanied by a significant increase of Reynolds stress in the flow field. The reattached turbulent boundary layer was much more energetic, thus more capable of advancing against an adverse pressure gradient without flow separation, compared to the laminar boundary layer upstream of the laminar separation bubble. The laminar separation bubble formed on the airfoil upper surface was found to move upstream, approaching the airfoil leading edge as the AOA increased. While the total length of the laminar separation bubble was found to be almost unchanged (∼20% of the airfoil chord length), the laminar portion of the separation bubble was found to be slightly stretched, and the turbulent portion became slightly shorter with the increasing AOA. After the formation of the separation bubble on the airfoil, the increase rate of the airfoil lift coefficient was found to considerably degrade, and the airfoil drag coefficient increased much faster with increasing AOA. The separation bubble was found to burst suddenly, causing airfoil stall, when the adverse pressure gradient became too significant at AOA>12.0deg.

Publisher

ASME International

Subject

Mechanical Engineering

Reference26 articles.

1. Low Speed Flows Involving Bubble Separations;Tani;Prog. Aeronaut. Sci.

2. Carmichael, B. H. , 1981, “Low Reynolds Number Airfoil Survey,” NASA CR-165803, Vol. 1.

3. Low-Reynolds-Number Airfoils;Lissaman;Annu. Rev. Fluid Mech.

4. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications

5. Micro-Air-Vehicles: Can They be Controlled Better;Gad-el-Hak;J. Aircr.

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3