Simultaneous Optimization of Supervisory Control and Gear Shift Logic for a Parallel Hydraulic Hybrid Refuse Truck Using Stochastic Dynamic Programming

Author:

Johri Rajit1,Baseley Simon2,Filipi Zoran1

Affiliation:

1. University of Michigan, Ann Arbor, MI

2. Bosch Rexroth Corporation, Rochester Hills, MI

Abstract

The power management controller of a hybrid vehicle orchestrates the operation of onboard energy sources, namely engine and auxiliary power source with the goal of maximizing performance objectives such as the fuel economy. The paper focuses on optimization of the power management strategy of the refuse truck with parallel hydraulic hybrid powertrain. The high power density of hydraulic components and high charging/discharging efficiency of accumulator with no power constraint make hydraulic hybrid an excellent choice for heavy-duty stop and go application. Two power management strategies for a parallel hydraulic hybrid refuse truck are compared; heuristic and stochastic dynamic programming based optimal controller. For designing a SDP based controller, an infinite horizon problem is setup with power demand from driver modeled as random Markov process. The objective is to maximize system level efficiency by optimizing (i) the power split between engine and hydraulic propulsion unit, and (ii) gear shift schedule. This combines the optimization of powertrain parameters with power management design.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Analysis for Braking Energy Recovery Strategies of Hybrid Electric Vehicles;Highlights in Science, Engineering and Technology;2022-11-10

2. Hydraulic and pneumatic hybrid powertrains for improved fuel economy in vehicles;Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance;2022

3. Neural network based power management of hydraulic hybrid vehicles;International Journal of Fluid Power;2016-09-28

4. Hydraulic and pneumatic hybrid powertrains for improved fuel economy in vehicles;Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3