Affiliation:
1. Mechanical Engineering Department, Iran University of Science and Technology, Narmak, Tehran 16844, Iran e-mail:
Abstract
A novel application of the adaptive fuzzy sliding-mode control (AFSMC) to the case of an antilock braking system (ABS) is proposed in this paper. ABS is a system in vehicles that allows the wheels to maintain tractive contact with the road and avoid uncontrolled skidding. By using ABS, the stopping distances on dry and slippery surfaces are expected to decrease. The maximum braking force is a nonlinear function of the slip ratios of the wheels, which is sensitive to the vehicle weight and road condition. In this research, a simple low-order model of the braking dynamics is considered and unmodeled dynamics are taken as uncertainties. The robust AFSMC method is used to regulate the wheel slip ratio toward the desired value. The proposed controller employs pulse width modulation (PWM) to generate the braking torque. There is no need to use any reference measured data or experimental knowledge of relevant experts to design the controller. A clear advantage is that the designed controller does not rely on the nonlinear tire–road friction model. The second Lyapunov theorem is employed to prove the closed-loop asymptotic stability. In the simulations, the multibody dynamics method is used for modeling the longitudinal motion of SAIPA X100 and X200 vehicle platforms. Furthermore, the actuation and the switching dynamics of the braking system are taken into account. Resulting performance is compared to the conventional sliding-mode and feedback linearization methods. Analysis of the simulation results reveals the effectiveness of proposed AFSMC method.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献