Affiliation:
1. Institute of Jet Propulsion and Turbomachinery, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany
Abstract
Due to the trend in the design of modern aeroengines to reduce weight and to realize high pressure ratios, fan and first-stage compressor blades are highly susceptible to flutter. At operating points with transonic flow velocities and high incidences, stall flutter might occur involving strong shock-boundary layer interactions, flow separation, and oscillating shocks. In this paper, results of unsteady Navier-Stokes flow calculations around an oscillating blade in a linear transonic compressor cascade at different operating points including near-stall conditions are presented. The nonlinear unsteady Reynolds-averaged Navier-Stokes equations are solved time accurately using implicit time integration. Different low-Reynolds-number turbulence models are used for closure. Furthermore, empirical algebraic transition models are applied to enhance the accuracy of prediction. Computations are performed two dimensionally as well as three dimensionally. It is shown that, for the steady calculations, the prediction of the boundary layer development and the blade loading can be substantially improved compared with fully turbulent computations when algebraic transition models are applied. Furthermore, it is shown that the prediction of the aerodynamic damping in the case of oscillating blades at near-stall conditions can be dependent on the applied transition models.
Reference36 articles.
1. Force and Moment Coefficients for High Deflection Cascades;Whitehead
2. CA Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows Using an Implicit Wave-Split Scheme;Montgomery
3. A Numerical Model of the Onset of Stall Flutter in Cascades;Clark;J. Comput. Phys.
4. He, L., and Denton, J., 1993, “Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades,” ASME Paper No. 93-GT-92.
5. Numerical Analysis of Unstalled and Stalled Flutter Using a Navier-Stokes Code with Deforming Meshes;Eguchi
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献