Uncertainty Quantification of Spalart–Allmaras Turbulence Model Coefficients for Simplified Compressor Flow Features

Author:

He Xiao1,Zhao Fanzhou1,Vahdati Mehdi1

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Abstract Turbulence model in Reynolds-averaged Navier–Stokes (RANS) simulations has a crucial effect on predicting the compressor flows. In this paper, the parametric uncertainty of the Spalart–Allmaras (SA) turbulence model is studied in simplified two-dimensional (2D) flows, which includes some of the compressor tip flow features. The uncertainty is quantified by a metamodel-based Monte Carlo method. The model coefficients are represented by uniform distributions within intervals, and the quantities of interest include the velocity profile, the Reynolds stress profile, the shock front, and the separation size. An artificial neural network (ANN) is applied as the metamodel, which is tuned, trained, and tested using databases from the flow solver. The uncertainty of quantities of interest is determined by the range of the metamodel and the database samples from the flow solver. The sensitivity of the model coefficients is quantified by calculating the gradient of quantities of interest from the metamodel. Results show that the high-fidelity data of the quantities of interest cannot be fully enveloped by the uncertainty band in regions with separation and shock. Crucial model coefficients on the quantities of interest are identified. However, recalibration of these coefficients results in contradictory prediction of different quantities of interest across flow regimes, which indicates the need for a modified Spalart–Allmaras turbulence model form to improve the accuracy in predicting complex flow features.

Publisher

ASME International

Subject

Mechanical Engineering

Reference46 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3