Conceptual Recovery of Exhaust Heat From a Conventional Gas Turbine by an Inter-Cooled Inverted Brayton Cycle

Author:

Tsujikawa Y.1,Ohtani K.1,Kaneko K.1,Watanabe T.1,Fujii S.1

Affiliation:

1. Osaka Prefecture University, Sakai, Japan

Abstract

Improvements in industrial gas turbine performance have been made in last decade. Advances in the gas turbine technologies such as higher turbine inlet temperature, materials, and manufacturing techniques justify the development of new combined or cogeneration cycle schemes, with more advance heat recovery capabilities. This paper describes the performance analysis of an Inverted Brayton Heat Recovery (IBHR) cycle, which is combined with conventional gas turbine and worked as a bottoming cycle. The optimum characteristics have been calculated and it is shown that this cycle is superior to the conventional combined cycle and cogeneration systems in terms of thermal efficiency and specific output. The main feature of this new concept is that the inverted Brayton cycle with inter-cooling is introduced. Further, a new estimating function, “the emission coefficient of carbon-dioxide” has been successfully introduced to assess the environmental compatibility.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3