Switching Mechanism and Complex Motions in an Extended Fermi-Acceleration Oscillator

Author:

Luo Albert C. J.1,Guo Yu1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805

Abstract

In this paper, an extended model of the Fermi-acceleration oscillator is presented to describe impacting chatters, grazing, and sticking between the particle (or bouncing ball) and piston. The sticking phenomenon in such a system is investigated for the first time. Even in the traditional Fermi-oscillator, such a sticking phenomenon still exists but one often ignored it. In this paper, the analytical conditions for the grazing and sticking phenomena between the particle and piston in the Fermi-acceleration oscillator are developed from the theory of discontinuous dynamical systems. Compared with existing studies, the four exact mappings are used to analyze the motion behaviors of the Fermi-oscillator instead of one or two mappings. Mapping structures formed by generic mappings are adopted for the analytical predictions of periodic motions in the Fermi-acceleration oscillator. Periodic and chaotic motions in such an oscillator are illustrated to show motion complexity and grazing and sticking mechanism. Once the masses of the ball and primary mass are in the same quantity level, the model presented in this paper will be very useful and significant. This idea can apply to a system possessing two independent oscillators with impact, such as gear transmission systems, bearing systems, and time-varying billiard systems.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

1. Fermi Acceleration Mechanism in the One-Dimensional Case;Zaslavskii;Dokl. Akad. Nauk SSSR

2. Regular and Chaotic Dynamics of the Damped Fermi Accelerator;Luna-Acosta;Phys. Rev. A

3. Fermi Accelerator in Atom Optics;Saif;Phys. Rev. A

4. Energy Conservation and Chaos in the Gravitationally Driven Fermi Oscillator;Lopac;American Journal of Physics

5. Minimal Stochastic Model for Fermi’s Acceleration;Bouchet;Phys. Rev. Lett.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3