The State-of-the-Art of Gas-Liquid Cylindrical Cyclone Control Technology: From Laboratory to Field

Author:

Wang Shoubo1,Gomez Luis1,Mohan Ram1,Shoham Ovadia1,Kouba Gene2,Marrelli Jack2

Affiliation:

1. The University of Tulsa, 800 S Tucker Drive, Tulsa, OK 74104

2. Chevron Energy Technology Company, 1400 Smith Street, Houston, TX 77002

Abstract

Conventional gas-liquid separators are vessel-type with simple level and pressure control since the residence time is large. Compact gas-liquid separators, such as gas-liquid cylindrical cyclone (GLCC©—gas-liquid cylindrical cyclone—copyright, University of Tulsa, 1994), have emerged recently as alternatives to reduce size and increase separation efficiency for onshore, offshore, and subsea applications. As compared with the vessel-type separators, compact separators are simple, low-cost, low-weight, require little maintenance and are easy to install and operate. However, the residence time of the GLCC is very small. Consequently, it can be destabilized easily due to high flow variations at the inlet, for example, slugging, without the aid of fast and accurate control systems. In the past, lack of understanding of control system dynamics and design tools has prevented this technology from fast field deployment. The objective of this study is to present a review of the compact gas-liquid separator (GLCC) control technology. This includes the development of control strategies, control system design, dynamic simulation, experimental investigation, and field applications. The performance of compact gas-liquid separator (GLCC) strongly depends on the liquid level and/or separating pressure. In this investigation, several control strategies have been presented for field applications of gas-liquid compact separators. Especially, an optimal control strategy was developed for handling slug flow and optimizing the system performance in terms of reduced or eliminated liquid carry-over or gas carry-under. The developed strategies have been used for the design of several hundreds of GLCC applications, currently in operation in the field. Details of some of these applications are also presented. This study provides the state-of-the-art of gas-liquid compact separator control technology from the laboratory to the field.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Dynamic Simulation of Slug Catcher Behavior;Genceli

2. Kolpak, M. M. , 1994, Passive Level Control in Two-Phase Separator, Internal Communication, Arco Exploration and Production Technology.

3. Wang, S. , 1997, “Control System Analysis of Gas-Liquid Cylindrical Cyclone Separators,” MS thesis, University of Tulsa.

4. Fuzzy Logic Control of a Floating Level in a Refinery Tank;Galichet

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3