Making Robotic Swarms Trustful: A Blockchain-Based Perspective

Author:

Thakur Atul1,Sahoo Swagatika2,Mukherjee Arnab2,Halder Raju2

Affiliation:

1. Indian Institute of Technology Patna Department of Mechanical Engineering, , Patna 801106 , India

2. Indian Institute of Technology Patna Department of Computer Science and Engineering, , Patna 801106 , India

Abstract

Abstract Lately, the importance of swarm robotics has been recognized in a wide range of areas, including logistics, surveillance, disaster management, agriculture, and other industrial applications. The swarm intelligence introduced by the existing paradigm of artificial intelligence and machine learning often ignores the aspect of providing security and reliability guarantees. Consider a futuristic scenario wherein self-driving cars will transport people, self-driving trucks will carry cargo between warehouses, and a combination of legged robots/drones will ship cargo from warehouses to doorsteps. In the case of such a heterogeneous swarm of robots, it is crucial to ensure a trustful and reliable operating platform for smooth coordination, collaborative decision-making via appropriate consensus, and seamless information sharing while ensuring data security. In this direction, blockchain has been proven to be an effective technology that maintains the transactions (records) in a trustful manner after being validated through consensus. This guarantees accountability, transparency, and trust concerning the storage, safeguarding, and sharing of information among the parties. In this paper, we provide a walkthrough demonstrating the feasibility of using blockchain technology to make the robotic swarm trustful systems in their adoption to critical applications at large-scale. We highlight the pros and cons of the use of cloud vis-a-vis blockchain in swarm robotics. Finally, we present various future research opportunities pertaining to the adoption of blockchain technology in swarm robotics applications.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3