A Strain Rate-Dependent Finite Element Model of Drop-Weight Tear Tests for Pipeline Steels

Author:

Yu P. S.1,Ru C. Q.1

Affiliation:

1. University of Alberta, Edmonton, AB, Canada

Abstract

The influence of crack speed on dynamic fracture toughness of pipeline steel has been observed in some recent tests, although it is still a challenge to obtain a specific relationship between dynamic fracture toughness and crack speed due to the expensive costs of experiments. Meanwhile, the understanding of the dependence of fracture toughness on crack speed is critical for material selection and crack-arrest design in high-strength steel pipelines. The present work develops a strain rate-dependent cohesive zone model and related finite element model to analyze speed-dependent dynamic fracture of pipeline steels observed in recent drop-weight tear tests. Different than most of existing cohesive zone models, the traction-separation law of the present model considers the role of rate of separation, and a strain rate-dependent elastic-viscoplastic constitutive model is employed for the bulk material. The speed-dependences of crack-tip-opening angle (CTOA) and energy dissipation observed in experiments are reproduced in our simulations for crack speed up to 150 m/s. A remarkable feature of the present work is that the present rate-dependent model can predict speed-dependent fracture as a consequence of the strain rate effect even when all fixed material parameters are speed-independent. These results suggest that the strain rate effect in the bulk material could be largely responsible for the speed-dependent dynamic fracture of pipeline steels, and the present rate-dependent model could be used to simulate dynamic fracture of pipeline steels especially when experiments are difficult or too expensive.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3