Effect of Jet Position on Cooling an Array of Heated Obstacles

Author:

Maghrabie Hussein M.1,Attalla M.2,Fawaz H. E.3,Khalil M.4

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Al Shoban Al Moslemin Street, Qena 83521, Egypt e-mail:

2. Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Al Shoban Al Moslemin Street, Qena 83521, Egypt e-mail:

3. Department of Mechanical Engineering, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12311, Egypt e-mail:

4. Department of Mechanical Engineering, Faculty of Engineering, Sohag University, Shark District, Sohag 82514, Egypt e-mail:

Abstract

Numerical study of the effect of jet position (JP) on cooling process of an array of heated obstacles simulating electronic components has been investigated based on realizable k–ε model. Jet positions have been changed to impinge each row of obstacles consecutively. The experiments have been achieved at three different values of jet-to-channel Reynolds number ratio, Rej/Rec = 1, 2, and 4. In this study, a comparison between two different cooling processes, cross flow only (CF) and jet impingement with cross flow (JICF), has been achieved. The flow structure, heat transfer characteristics, and the pumping power have been investigated for different jet positions. The results show that the jet position affects significantly the flow structure, as well as the heat transfer characteristics. According to the results of average heat transfer coefficient and the pumping power, the more effective jet position for all values of jet-to-channel Reynolds number ratio (1, 2, and 4) is achieved when the jets impinge the third row of obstacles (JP3).

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3