Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence

Author:

Roberts S. K.1,Yaras M. I.1

Affiliation:

1. Carleton University, Department of Mechanical and Aerospace Engineering, 3135 Mackenzie Bldg., 1125 Colonel By Dr., Ottawa, Ontario, Canada K1S 5B6

Abstract

This paper presents experimental results documenting the effects of surface roughness and free-stream turbulence on boundary-layer transition. The experiments were conducted on a flat surface, upon which a pressure distribution similar to those prevailing on the suction side of low-pressure turbine blades was imposed. The test matrix consists of five variations in the roughness conditions, at each of three free-stream turbulence intensities (approximately 0.5%, 2.5%, and 4.5%), and two flow Reynolds numbers of 350,000 and 470,000. The ranges of these parameters considered in the study, which are typical of low-pressure turbines, resulted in both attached-flow and separation-bubble transition. The focus of the paper is on separation-bubble transition, but the few attached-flow test cases that occurred under high roughness and free-stream turbulence conditions are also presented for completeness of the test matrix. Based on the experimental results, the effects of surface roughness on the location of transition onset and the rate of transition are quantified, and the sensitivity of these effects to free-stream turbulence is established. The Tollmien–Schlichting instability mechanism is shown to be responsible for transition in each of the test cases presented. The root-mean-square height of the surface roughness elements, their planform size and spacing, and the skewness (bias towards depression or protrusion roughness) of the roughness distribution are shown to be relevant to quantifying the effects of roughness on the transition process.

Publisher

ASME International

Subject

Mechanical Engineering

Reference39 articles.

1. The Many Faces of Turbine Surface Roughness;Bons;J. Turbomach.

2. Surface Roughness Measurements on Gas Turbine Blades;Taylor;J. Turbomach.

3. Airfoil Boundary-Layer Development and Transition with Large Leading-Edge Roughness;Kerho;AIAA J.

4. The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 1 Characteristics of Wire Trips;Gibbings;Aeronaut. J.

5. The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 2 Characteristics of Single Spherical Trips;Gibbings;Aeronaut. J.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3