Soil–Structure–Wave Interaction of Gravity-Based Offshore Wind Turbines: An Analytical Model

Author:

Pavlou Dimitrios G.1

Affiliation:

1. Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Stavanger 4036, Norway

Abstract

Abstract The structural design of offshore wind turbines is based on the consideration of coupled dynamic phenomena. Wave loads cause the dynamic oscillation of the monopile, and the dynamic oscillation of the monopile affects the wave loads. The boundary conditions of the gravity-based foundation-monopile-turbine system are mostly affected by the flexural stiffness of the foundation plate, the elastic and creep behavior of the soil, and the inertia (translational and rotational) of the wind turbine mass. The design of the foundation should consider the dynamic response of the soil and the monopile, and the dynamic response of the soil and the monopile is affected by the design parameters of the foundation. The initial conditions of the system yield transient dynamic phenomena. A braking wave at t = 0 causes different dynamic response than the steady-state conditions due to a harmonic wave load. In the present work, an integrated analytical model simulating the above dynamic phenomena is proposed. With the aid of double integral transforms and generalized function properties, a solution of the corresponding differential equations for the monopile-soil-foundation system and the boundary and initial conditions is derived. A parametric study is carried out, and results of the effect of the design parameters and soil properties are presented and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference33 articles.

1. Numerical Investigation of Wave-Structure Interaction Using Openfoam;Chen;Ocean Eng.,2014

2. Dynamic Analysis of Offshore Monopile Wind Turbine Including the Effects of Wind-Wave Loading and Soil Properties;Ong,2013

3. Wave-Induced Dynamic Response and Instability of Seabed Around Caisson Breakwater;Ulker;Ocean Eng.,2010

4. Wave-Induced Pore Pressure Responses and Soil Liquefaction Around Pile Foundation;Xiao-Jun;Int. J. Offshore Polar Eng.,2011

5. Numerical Study on Effects of the Embedded Monopile Foundation on Local Wave-Induced Porous Seabed Response;Zhang;Math. Probl. Eng.,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3