Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I — Aerodynamic Measurements

Author:

Kost Friedrich1,Nicklas Martin1

Affiliation:

1. German Aerospace Center (DLR), Göttingen, Germany

Abstract

Thermodynamic and aerodynamic measurements were carried out in a linear turbine cascade with transonic flow field. Heat transfer and adiabatic film-cooling effectiveness resulting from the interaction of the flow field and the ejected coolant at the endwall were measured and will be discussed in two parts. The investigations were performed in the Windtunnel for Straight Cascades (EGG) at DLR, Göttingen. The film-cooled NGV endwall was operated at representative dimensionless engine conditions of Mach and Reynolds number Ma2is=1.0 and Re2=850,000 respectively. Part I of the investigation discusses the aerodynamic measurements. Detailed aerodynamic measurements were carried out in the vicinity of a turbine stator endwall using conventional pressure measurements and a Laser-2-Focus (L2F) device. The L2F served as a velocimeter measuring 2D-velocity vectors and turbulence quantities and as a tool to determine the concentration of coolant ejected through a slot and through holes at the endwall. Pressure distribution measurements provided information on the endwall pressure field and its variation with coolant flow rate. Pressure probe measurements delivered cascade performance data. Oil flow visualization and laser velocimetry gave a picture of the near endwall flow field and its interference with the coolant. A strikingly strong interaction of coolant air and secondary flow field could be identified. The measurement of coolant concentration downstream of the ejection locations provided a detailed picture of the coolant flow convection and its mixing with the main flow. The relative coolant concentration in the flow field is directly comparable to the adiabatic film-cooling effectiveness measured by thermal methods at the wall.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3